

LA-UR-18-23726

Approved for public release; distribution is unlimited.

Title: Annual Summary Report for the Los Alamos National Laboratory Technical

Area 54, Area G Disposal Facility Fiscal Year 2017

Author(s): Stauffer, Philip H.

Birdsell, Kay Hanson

Chu, Shaoping Pawar, Rajesh J. Miller, Elizabeth D. Atchley, Adam Lee French, Sean B.

Intended for: Presentation to Federal Low Level Waste Review Group (LFRG)

Issued: 2018-04-30

Annual Summary Report for the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility Fiscal Year 2017

Presented By: Pete Maggiore, LANL Member

Los Alamos Field Office

MAY 2018 LFRG BUSINESS MEETING

LANL Authors:

Philip H. Stauffer, Kay H. Birdsell, Shaoping P. Chu, Rajesh J. Pawar, Elizabeth D. Miller Adam L. Atchley, and Sean B. French

 Contract change from NNSA ownership to DOE-EM ownership is happening now (May 2018)

New contractor transfer of responsibility in progress

 Collaboration will be necessary to ensure the PA/CA combined model is used for all dose calculations

- Disposal operations at the facility have used approximately 65 ac of the 100-ac site
- Remaining Pit 38x volume of approximately 2000 m³ and seven shafts are currently open.

Aboveground View and Underground Disposal Units at MDA G

Completed RNS waste drum treatment.

Topic 3-4: Changes Potentially Affecting the PA/CA,DAS, or RWMB

Summary of UDQE's and R&D work:

- A) Two SA's completed in FY17: two in draft form
- B) Open UDQE's. Dome 224, Pit 25.
- C) Following changes to inventory and assumptions based on LANL enduring waste management strategy (2017).
- D) To ensure a clean break during the contract change, this years ASR assumes no additional waste after 9/30/2017.
- E) Expansion Zone 4 has been removed from the projected inventory.
- F) The site closure date has been modified from 2044 to 2035.
- G) R&D Erosion to 10,000 yrs. Cliff retreat. Focused groundwater flow in Pit 38x.

Topic 3-4: Changes Potentially Affecting the PA/CA,DAS, or RWMB

Two Special Analyses completed in 2017: 2 DRAFTS

- 1. Potential underreporting of Am-241 inventory for nitrate salt waste
- The nitrate salt waste was generated through liquid evaporation from 70 to 80
- The SA determined that no waste in MDA fits the profile of the underreported waste
- No action is needed for buried LLW at G
- 2. Fort St. Vrain drum disposal
- SA concluded that these drums could be safely disposed of in Pit 38x
- Inventory has been added to the PA/CA
- Saved LANL an estimated 7.5M\$
- 3. DRAFT Pit 25 unconventional cover erosion and enhanced infiltration
- Three biointrusion covers differ from the PA/CA assumed operational covers
- Enhanced infiltration into the underlying waste was analyzed
- The SA recommends a corrective action, such as grading and additional cover material, to slow erosion and infiltration through the waste
- 4. DRAFT Dome 224 removal will eventually require moisture sampling

Topic 3-4: Changes Potentially Affecting the PA/CA,DAS, or RWMB

Composite Analysis Update: Alternate Source Evaluation

- Included MDAs A, AB, B, C, H, J, L, and T; Cañada del Buey; and Pajarito Canyon;
- Releases from the alternate sources unlikely increase the exposures estimated for releases from Area G significantly.

Table 2-1 Potential Changes Affecting the PA, CA, DAS or RWMB

Disposal Facility or Unit	UDQE number or reason for change	Change, Discovery, Proposed Action, New Information description	Evaluation Results	Special Analysis number (if applicable)	PA,CA,DAS or RWMB Impacts
R&D on	Observations of	Excess water	New residence	N/A	Impacts the
Pit 38	Pit 38 spraying	in Pit 38 drives	time distribution		PA/CA by
infiltration	and run-	increased flow	flowpaths		increasing
from excess	off/ponding	rates toward	capture this		the
water	initiated this	groundwater	process. Dose		projected
water	R&D effort		remains below 4		dose of 14C
			mrem/yr at		
			1000 yrs.		

OFFICE OF ENVIRONMENTAL MANAGEMENT

Topic 5: Table from Chapter 9.2.2

R&D on	Part of ongoing	We were	Erosion to	N/A	No impact
erosion to	R&D work	guided to	10,000 years		on PA/CA
10,000 yrs	suggested by	examine how	does not expose		because of
	DOE/LFRG	erosion	waste using		the current
		behaves to	current		1000 yr
		10,000 yrs.	assumptions		analysis
					limit
R&D on cliff	Part of ongoing	New data on	New analysis	N/A	No impact
retreat	R&D work	isotopic signals	suggests cliff		on PA/CA
	suggested by	from boulder	retreat is		
	DOE/LFRG	faces	relatively slow		
Expansion	Change in	Planning for	Lower dose	N/A	Impacts the
Zone 4	disposal	expansion of	predictions,		PA/CA,
	assumption	LLW disposal	especially in		RWMB, and
		in TA-54 Zone	reaches only		DAS
		4 has been	accessed by Zone		
		terminated	4, where dose		
			goes to zero.		

All of	Change in	Site closure will	Slightly higher	N/A	Impacts the
NADA C	disposal	move from 2044	dose		PA/CA,
MDA G	assumption	to 2035.	predictions for		RWMB, and
			tritium		DAS
All of	Change in	No new waste	Lower dose	N/A	Impacts the
MDA G	disposal	will be disposed	predictions.		PA/CA,
IVIDA G	assumption	of at MDA G			RWMB, and
		after September			DAS
		30, 2017.			
All of	UDQE_SA_1	Potential	No under-	UDQE_SA_16_	No impact
MDA G	6_001	under-reporting	reporting was	001	on PA/CA,
WIDA G		of AM-241	found		RWMB, or
		01 AW-241			DAS
Pit 38	UDQE_SA_1	Disposal of Ft. St.	No impact to	UDQE_SA_17_	Little impact
	7_001	Vrain reactor	the site was	001	to the
		waste in Pit 38.	found.		PA/CA

Pit 25	UDQE_16_002	Discovery of a	No immediate	UDQE_SA_1	No impact
	DRAFT	test cover	impact to dose	6_ 002	on PA/CA.
	DIALL	containing	was found.		
Dome 224	UDQE_16_005	Plans to	Plans are on	N/A	No impact
	DRAFT	remove this	HOLD for now		on PA/CA,
	DRAFI	dome initiated	because Dome		RWMB, or
		research into	224 houses		DAS
		a plan to	tritium waste		
		sample for	forms that are		
		increased	too dangerous		
		water	to move.		

Pit 38	UDQE proposed but never assigned	Calculations for proposed tritium canister disposal in Pit 38		N/A	No impact on PA/CA, RWMB, or DAS
Fix Goldsim Gas Diffusion	N/A	Fixed –ve sign on temperature dependent Henry's Law	Changed gas doses slightly	N/A	Minimal impact to dose from gasses
Organic C-14	N/A	Fixed model issue to account for organic C-14	Recovered to original model intent		Minimal change to dose

Topic 6: Cumulative effects of change

Table 3-1
Exposures for Members of the Public: FY2017 ASR vs. FY 2016 ASR

		Peak Mean Dose (mrem/yr)					
		Pei	formance Assess	ment	Composite Analysis		S
Exposure Scenario and Location	Perform Objective (mrem/yr)	FY 2017 ASR Results	FY 2016* ASR Results	Change in Dose Projection (%)	FY 2017 ASR Results	FY 2016* ASR Results	Change in Dose Projection (%)
Atmospheric LANL Boundary	10	1 5 5 01	1.75.01	12	2.25 01	2.45.01	
Area G Fence Line	10 10	1.5E-01	1.7E-01	-12 -37	2.3E-01 5.1E-01	2.4E-01	-4
All Pathways–Canyon	10	1.7E-03	2.7E-03	-31	5.1E-UI	5.1E-01	<u> </u>
Catchment CdB1	25/30a	4.8E-01	5.0E-01	-4	7.8E-01	8.1E-01	-4
Catchment CdB2	25/30	9.6E-01	1.0E+00	-4	1.7E+00	1.8E+00	-3
Catchment PC0	25/30	0	2.5E-04	-100	0	2.5E-04	-100
Catchment PC1	25/30	2.2E-02	2.4E-02	-7	1.45E-01	1.2E-01	+21
Catchment PC2	25/30	1.7E-02	1.9E-02	-11	8.0E-01	6.5E-01	+23
Catchment PC3	25/30	1.2E-01	1.2E-01	0	2.9E-01	2.4E-01	+21
Catchment PC4	25/30	2.2E-01	2.2E-01	0	2.7E-01	2.7E-01	0
Catchment PC5	25/30	3.0E-01	3.0E-01	0	2.4E+00	2.4E+00	0
Catchment PC6	25/30	1.6E-01	1.6E-01	0	2.8E+00	2.8E+00	0
Groundwater Pathway Scenarios							
All Pathways– Groundwater	25/30	6.6E-03	7.1E-03	-7	6.3E-03	6.8E-03	-7
Groundwater Resource Protection	4	1.1E-02	1.2E-02	-8	NA	NA	NA

Topic 6: Cumulative effects of change

Table 3-2
Projected Radon Fluxes: FY2017 ASR vs. FY 2016 ASR

-	P	eak Mean Flux (pCi/m²/s)	
Waste Disposal Region or Pit	FY 2017 ASR Results	FY 2016* ASR Results	Peak Mean Flux % difference
Region 1	1.1E-06	1.1E-06	0
Region 2	a	b	b
Region 3	0.0E+00	0.0E+00	0
Region 4	2.6E-02	2.6E-02	0
Region 5	8.1E-05	8.2E-05	-1
Region 6	2.8E-03	2.8E-03	0
Region 7	1.3E+01	1.3E+01	0
Region 8 (i.eZone 4)	0	1.8E-03	-100
Pit 15	1.4E+01	1.4E+01	0
Pit 37	2.7E-01	2.7E-01	0
Pit 38	3.8E-01	1.1E+00	-65
Entire Facility	3.8E-01	4.2E-01	-10

Topic 6: Cumulative effects of change

Table 3-3
Projected Intruder Exposures: FY2017 ASR vs. FY 2016 ASR

		Peak Mean Dose (mrem/yr)		
		FY 2017	FY 2016*	
Disposal Units and	Performance	ASR	ASR	Change in Dose
Exposure Scenario	Objective	Results	Results	Projection (%)
MDA G Pits				
Intruder-Construction	500 mrem	3.6E+00	3.9E+00	-8
Intruder-Agriculture	100 mrem/yr	2.5E+01	2.7E+01	-7
Intruder-Post-Drilling	100 mrem/yr	1.2E+01	1.2E+01	0
MDA G Shafts				
Intruder-Construction	500 mrem	4.7E+00	4.8E+00	-2
Intruder-Agriculture	100 mrem/yr	8.7E+01	8.3 E+01	+5
Intruder-Post-Drilling	100 mrem/yr	1.3E+01	1.1E+01	+18
Zone 4 Shafts				
Intruder-Construction	500 mrem	0.0E+00	3.7E+00	-100
Intruder-Agriculture	100 mrem/yr	0.0E+00	8.6E+01	-100
Intruder-Post_Drilling	100 mrem/yr	0.0E+00	1.1E+01	-100

Topic 7: Disposal Receipt Review

• Disposal Receipt Review:

1 Pit (38x) and Seven shafts remain open

Pit/Shaft Number	Operational Period	Length/Width/Height (Pit) or Diameter/Depth (m)	Liner	Volume (m³)	Waste Volume (m³)
Pit-38x	2013-present	93/18/13	Unlined	12000	~10000
Shaft-159	1989-present	0.61/14	Corrugated metal pipe, asphalt covered	4.	0.32
Shaft-165	2004-present	0.91/18	Corrugated metal pipe, asphalt covered	12.	3.1
Shaft-169	2004-present	0.91/18	Corrugated metal pipe	12.	1.7
Shaft-170	2004-present	0.91/18	Corrugated metal pipe	12.	2.3
Shaft-300	2004-present	2.4/6.7	Corrugated metal pipe	31.	0.81
Shaft-301	2004-present	2.4/6.7	Corrugated metal pipe	31.	2.5
Shaft-370	1999-present	4.9/18.	Unlined	340.	19.

Topic 7: Disposal Receipt Review

• Disposal Receipt Review:

- Disposal records in FY 2017 show less waste was disposed than previous projections;
- The expected disposal trends do not compromise the ability of the disposal facility to safely contain the waste disposed;
- All doses and radon fluxes projected by the PA and CA remained within performance objectives.

Topic 8: Monitoring

Monitoring

- Environmental Surveillance: Ambient Air Sampling Meteorological Monitoring Surface water Monitoring Groundwater Monitoring. 0.025 mrem/yr max dose (tritium in White Rock)
- Subsurface Moisture Monitoring
- The history of data is not long enough to validate the PA/CA forecasts

Research and Development - Groundwater Modeling:

- Validated the model by comparison to moisture monitoring data following the 13" rainfall in September 2013
- Carbon-14 drives the groundwater dose based on the simulations
- Preliminary data indicate that inclusions of the 1000 yr-return rainfall water led to a significant change in the predicted dose for both the All Pathways and Groundwater Protection scenarios
- Future work will include less conservative assumptions
- Report on R&D:

"Groundwater Modeling and Predictions of C-14 Transport from Pit 38 at Material Disposal Area G" LA-UR-18-23491

Conservative ¹⁴C Dose projections over 1,000 years for groundwater pathways computed with the CA model.

Research and Development – Erosion to 10,000 yrs:

- Uncertainty in erosion parameters
- Cover appears to perform well given assumptions
- Next steps are to include long term erosion in the PA/CA dose calculations
- Assumptions of the erosion modeling could use more investigation
- Report on R&D:

"Updated Erosion Analysis for Material Disposal Area G, Technical Area 54, Los Alamos National Laboratory" LA-UR-18-23419

Research and Development - Cliff Retreat:

- Characterized the mechanism and rates of cliff retreat along the edges of Area G using data gathered from the 2014 photo-documentation campaign.
- Cosmogenic dating analysis is ongoing, which will provide insight into the long-term stability of the cliffs, and the timeframe of the cliffs in their current geometry
- Future work: statistical analyses to determine the rate and distribution patterns and incorporate the data into the erosion model to evaluate potential impacts on long-term performance
- Report on R&D:

Cliff Retreat Characterization at Technical Area 54, Los Alamos National Laboratory, Los Alamos, NM LA-UR-18-xxxx

Slope angles surrounding MDA G. Green represents shallow-dipping slopes; red indicates steeper slopes (>23°).

Reference	Method	Erosion Rate per 10,000
		years
Purtymun and	Not specified	140 cm
Kennedy (1971)		
Poths and Goff	He and Ne cosmogenic dating	18 cm (densely welded units)
(1990)		28 cm (less densely welded
		units)
Albrecht et al.	Be and Al cosmogenic dating	1 cm (densely welded units)
(1993)		11 cm (less densely welded
		units)
This study	C-14 cosmogenic dating	145.5 cm (densely welded
		units, median value)
		Range of 27.6 to 347.7 cm
		(densely welded units)
This study	Average canyon widening	1.95 m
	measurements	

Comparison of erosion rates per 10,000 years for various dating techniques.

Topic 10: Planned or Contemplated Changes

- No changes to the Monitoring Plan, Maintenance Plan, Land Use Plan
- Implemented updated processes, systems, and procedures for operations
 - Waste characterization and documentation
 - Waste certification and verification
 - Waste packaging and transportation
- WAC was modified in March 2018. Language added to ASR to ensure that WAC changes are captured
- New PA/CA assumptions
 - No waste added after Sept. 30, 2018
 - No expansion into Zone 4
 - Closure in 2035 changed from 2044

Topic 10: Planned or Contemplated Changes

 Pit 38 and existing shafts may be reserved for disposal of specific wastes that are difficult to transport off site. New PA/CA calculations will be required for any new inventory

Issue 11: Status of DAS Conditions, Key and Secondary Issues

- Progress was made for several secondary issues identified by the LFRG; none
 of them were fully resolved and closed in FY 2016
- The increase in off-site shipments and the cessation of pit disposal will lead to significantly less disposed waste than the previous PA/CA forecasts
- The assumptions and conclusions of the 2009 approved PA/CA remain valid at present: Groundwater fast path remains below 4 mrem/yr
- All conditions for continued disposal of LLW at Area G are met

LLW Disposal Operations in Pit

LLW Disposal Operations in Shaft

Issue 12: Certification of the Continued Adequacy of the PA, CA, DAS, and RWMB

- No Current Need for DAS/PA/CA/SA review
- Focused groundwater dose has changed significantly and a new SA will determine if this needs LFRG input
- Need for HQ assistance/guidance

